Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Chem ; 404(11-12): 979-1002, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37823775

RESUMO

Ribosomal RNAs (rRNAs) are structural components of ribosomes and represent the most abundant cellular RNA fraction. In the yeast Saccharomyces cerevisiae, they account for more than 60 % of the RNA content in a growing cell. The major amount of rRNA is synthesized by RNA polymerase I (Pol I). This enzyme transcribes exclusively the rRNA gene which is tandemly repeated in about 150 copies on chromosome XII. The high number of transcribed rRNA genes, the efficient recruitment of the transcription machinery and the dense packaging of elongating Pol I molecules on the gene ensure that enough rRNA is generated. Specific features of Pol I and of associated factors confer promoter selectivity and both elongation and termination competence. Many excellent reviews exist about the state of research about function and regulation of Pol I and how Pol I initiation complexes are assembled. In this report we focus on the Pol I specific lobe binding subunits which support efficient, error-free, and correctly terminated rRNA synthesis.


Assuntos
RNA Polimerase I , Saccharomyces cerevisiae , RNA Polimerase I/química , RNA Polimerase I/genética , RNA Polimerase I/metabolismo , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Ribossomos/genética , RNA Ribossômico/genética , RNA Ribossômico/metabolismo
2.
PLoS One ; 18(3): e0283698, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36996028

RESUMO

RpS0/uS2, rpS2/uS5, and rpS21/eS21 form a cluster of ribosomal proteins (S0-cluster) at the head-body junction near the central pseudoknot of eukaryotic small ribosomal subunits (SSU). Previous work in yeast indicated that S0-cluster assembly is required for the stabilisation and maturation of SSU precursors at specific post-nucleolar stages. Here, we analysed the role of S0-cluster formation for rRNA folding. Structures of SSU precursors isolated from yeast S0-cluster expression mutants or control strains were analysed by cryogenic electron microscopy. The obtained resolution was sufficient to detect individual 2'-O-methyl RNA modifications using an unbiased scoring approach. The data show how S0-cluster formation enables the initial recruitment of the pre-rRNA processing factor Nob1 in yeast. Furthermore, they reveal hierarchical effects on the pre-rRNA folding pathway, including the final maturation of the central pseudoknot. Based on these structural insights we discuss how formation of the S0-cluster determines at this early cytoplasmic assembly checkpoint if SSU precursors further mature or are degraded.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores/química , Subunidades Ribossômicas Menores/metabolismo , Precursores de RNA/genética , Precursores de RNA/química , RNA Ribossômico/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Conformação de Ácido Nucleico
3.
Methods Mol Biol ; 2533: 39-59, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35796981

RESUMO

Nuclear eukaryotic RNA polymerases (RNAPs) transcribe a chromatin template in vivo. Since the basic unit of chromatin, the nucleosome, renders the DNA largely inaccessible, RNAPs have to overcome the nucleosomal barrier for efficient RNA synthesis. Gaining mechanistical insights in the transcription of chromatin templates will be essential to understand the complex process of eukaryotic gene expression. In this article we describe the use of defined in vitro transcription systems for comparative analysis of highly purified RNAPs I-III from S. cerevisiae (hereafter called yeast) transcribing in vitro reconstituted nucleosomal templates. We also provide a protocol to study promoter-dependent RNAP I transcription of purified native 35S ribosomal RNA (rRNA) gene chromatin.


Assuntos
Nucleossomos , Saccharomyces cerevisiae , Cromatina/genética , Cromatina/metabolismo , Nucleossomos/genética , Nucleossomos/metabolismo , RNA Polimerase I/genética , RNA Polimerase I/metabolismo , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Moldes Genéticos , Transcrição Gênica
4.
Methods Mol Biol ; 2533: 63-70, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35796982

RESUMO

In archaea and bacteria the major classes of RNAs are synthesized by one DNA-dependent RNA polymerase (RNAP). In contrast, most eukaryotes have three highly specialized RNAPs to transcribe the nuclear genome. RNAP I synthesizes almost exclusively ribosomal (r)RNA, RNAP II synthesizes mRNA as well as many noncoding RNAs involved in RNA processing or RNA silencing pathways and RNAP III synthesizes mainly tRNA and 5S rRNA. This review discusses functional differences of the three nuclear core RNAPs in the yeast S. cerevisiae with a particular focus on RNAP I transcription of nucleolar ribosomal (r)DNA chromatin.


Assuntos
RNA Polimerase I , Proteínas de Saccharomyces cerevisiae , RNA Polimerases Dirigidas por DNA/metabolismo , RNA/metabolismo , RNA Polimerase I/metabolismo , RNA Polimerase II/metabolismo , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
5.
Methods Mol Biol ; 2533: 25-38, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35796980

RESUMO

In growing eukaryotic cells, nuclear ribosomal (r)RNA synthesis by RNA polymerase (RNAP) I accounts for the vast majority of cellular transcription. This high output is achieved by the presence of multiple copies of rRNA genes in eukaryotic genomes transcribed at a high rate. In contrast to most of the other transcribed genomic loci, actively transcribed rRNA genes are largely devoid of nucleosomes adapting a characteristic "open" chromatin state, whereas a significant fraction of rRNA genes resides in a transcriptionally inactive nucleosomal "closed" chromatin state. Here, we review our current knowledge about the nature of open rRNA gene chromatin and discuss how this state may be established.


Assuntos
Cromatina , Eucariotos , Cromatina/genética , DNA Ribossômico/genética , Eucariotos/genética , Eucariotos/metabolismo , Genes de RNAr , RNA Polimerase I/genética , RNA Polimerase I/metabolismo , RNA Ribossômico/genética , Transcrição Gênica
6.
Methods Mol Biol ; 2533: 81-96, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35796984

RESUMO

Recent technological progress revealed new prospects of high-resolution structure determination of macromolecular complexes using cryo-electron microscopy (cryo-EM) . In the field of RNA polymerase (Pol) I research, a number of cryo-EM studies contributed to understanding the highly specialized mechanisms underlying the transcription of ribosomal RNA genes . Despite a broad applicability of the cryo-EM method itself, preparation of samples for high-resolution data collection can be challenging. Here, we describe strategies for the purification and stabilization of Pol I complexes, exemplarily considering advantages and disadvantages of the methodology. We further provide an easy-to-implement protocol for the coating of EM-grids with self-made carbon support films. In sum, we present an efficient workflow for cryo-grid preparation and optimization, including early stage cryo-EM screening that can be adapted to a wide range of soluble samples for high-resolution structure determination .


Assuntos
RNA Polimerases Dirigidas por DNA , Microscopia Crioeletrônica/métodos , Substâncias Macromoleculares/química
7.
Methods Mol Biol ; 2533: 127-145, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35796986

RESUMO

Micrococcal nuclease (MNase) originating from Staphylococcus aureus is a calcium dependent ribo- and desoxyribonuclease which has endo- and exonucleolytic activity of low sequence preference. MNase is widely used to analyze nucleosome positions in chromatin by probing the enzyme's DNA accessibility in limited digestion reactions. Probing reactions can be performed in a global way by addition of exogenous MNase , or locally by "chromatin endogenous cleavage " (ChEC ) reactions using MNase fusion proteins . The latter approach has recently been adopted for the analysis of local RNA environments of MNase fusion proteins which are incorporated in vivo at specific sites of ribonucleoprotein (RNP ) complexes. In this case, ex vivo activation of MNase by addition of calcium leads to RNA cleavages in proximity to the tethered anchor protein thus providing information about the folding state of its RNA environment.Here, we describe a set of plasmids that can be used as template for PCR-based MNase tagging of genes by homologous recombination in S. cerevisiae . The templates enable both N- and C-terminal tagging with MNase in combination with linker regions of different lengths and properties. In addition, an affinity tag is included in the recombination cassettes which can be used for purification of the particle of interest before or after induction of MNase cleavages in the surrounding RNA or DNA. A step-by-step protocol is provided for tagging of a gene of interest, followed by affinity purification of the resulting fusion protein together with associated RNA and subsequent induction of local MNase cleavages.


Assuntos
Cálcio , Saccharomyces cerevisiae , Cálcio/metabolismo , Cromatina/metabolismo , DNA/genética , Recombinação Homóloga , Nuclease do Micrococo/metabolismo , Nucleossomos/metabolismo , RNA/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
8.
J Biol Chem ; 298(5): 101862, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35341765

RESUMO

Elongating nuclear RNA polymerases (Pols) frequently pause, backtrack, and are then reactivated by endonucleolytic cleavage. Pol backtracking and RNA cleavage are also crucial for proofreading, which contributes to transcription fidelity. RNA polymerase I (Pol I) of the yeast Saccharomyces cerevisiae synthesizes exclusively 35S rRNA, the precursor transcript of mature ribosomal 5.8S, 18S, and 25S rRNA. Pol I contains the specific heterodimeric subunits Rpa34.5/49 and subunit Rpa12.2, which have been implicated in RNA cleavage and elongation activity, respectively. These subunits are associated with the Pol I lobe structure and encompass different structural domains, but the contribution of these domains to RNA elongation is unclear. Here, we used Pol I mutants or reconstituted Pol I enzymes to study the effects of these subunits and/or their distinct domains on RNA cleavage, backtracking, and transcription fidelity in defined in vitro systems. Our findings suggest that the presence of the intact C-terminal domain of Rpa12.2 is sufficient to support the cleavage reaction, but that the N-terminal domains of Rpa12.2 and the heterodimer facilitate backtracking and RNA cleavage. Since both N-terminal and C-terminal domains of Rpa12.2 were also required to faithfully incorporate NTPs in the growing RNA chain, efficient backtracking and RNA cleavage might be a prerequisite for transcription fidelity. We propose that RNA Pols containing efficient RNA cleavage activity are able to add and remove nucleotides until the matching nucleotide supports RNA chain elongation, whereas cleavage-deficient enzymes can escape this proofreading process by incorporating incorrect nucleotides.


Assuntos
RNA Polimerase I/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Nucleotídeos , RNA , Clivagem do RNA , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
9.
PLoS One ; 16(11): e0252497, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34813592

RESUMO

In yeast and human cells many of the ribosomal proteins (r-proteins) are required for the stabilisation and productive processing of rRNA precursors. Functional coupling of r-protein assembly with the stabilisation and maturation of subunit precursors potentially promotes the production of ribosomes with defined composition. To further decipher mechanisms of such an intrinsic quality control pathway we analysed here the contribution of three yeast large ribosomal subunit r-proteins rpL2 (uL2), rpL25 (uL23) and rpL34 (eL34) for intermediate nuclear subunit folding steps. Structure models obtained from single particle cryo-electron microscopy analyses provided evidence for specific and hierarchic effects on the stable positioning and remodelling of large ribosomal subunit domains. Based on these structural and previous biochemical data we discuss possible mechanisms of r-protein dependent hierarchic domain arrangement and the resulting impact on the stability of misassembled subunits.


Assuntos
Proteínas Fúngicas/metabolismo , Precursores de RNA/metabolismo , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Dobramento de Proteína , Subunidades Ribossômicas Maiores/metabolismo
10.
J Biol Chem ; 295(15): 4782-4795, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32060094

RESUMO

RNA polymerase I (Pol I) is a highly efficient enzyme specialized in synthesizing most ribosomal RNAs. After nucleosome deposition at each round of rDNA replication, the Pol I transcription machinery has to deal with nucleosomal barriers. It has been suggested that Pol I-associated factors facilitate chromatin transcription, but it is unknown whether Pol I has an intrinsic capacity to transcribe through nucleosomes. Here, we used in vitro transcription assays to study purified WT and mutant Pol I variants from the yeast Saccharomyces cerevisiae and compare their abilities to pass a nucleosomal barrier with those of yeast Pol II and Pol III. Under identical conditions, purified Pol I and Pol III, but not Pol II, could transcribe nucleosomal templates. Pol I mutants lacking either the heterodimeric subunit Rpa34.5/Rpa49 or the C-terminal part of the specific subunit Rpa12.2 showed a lower processivity on naked DNA templates, which was even more reduced in the presence of a nucleosome. Our findings suggest that the lobe-binding subunits Rpa34.5/Rpa49 and Rpa12.2 facilitate passage through nucleosomes, suggesting possible cooperation among these subunits. We discuss the contribution of Pol I-specific subunit domains to efficient Pol I passage through nucleosomes in the context of transcription rate and processivity.


Assuntos
Cromatina/metabolismo , Nucleossomos/metabolismo , RNA Polimerase III/metabolismo , RNA Polimerase II/metabolismo , RNA Polimerase I/metabolismo , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Cromatina/genética , Replicação do DNA , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Nucleossomos/genética , Regiões Promotoras Genéticas , Ligação Proteica , Subunidades Proteicas/metabolismo , RNA Polimerase I/química , RNA Polimerase I/genética , RNA Polimerase II/química , RNA Polimerase II/genética , RNA Polimerase III/química , RNA Polimerase III/genética , Ribossomos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
11.
PLoS Genet ; 15(2): e1008006, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30802237

RESUMO

RNA polymerase I (Pol I) synthesizes ribosomal RNA (rRNA) in all eukaryotes, accounting for the major part of transcriptional activity in proliferating cells. Although basal Pol I transcription factors have been characterized in diverse organisms, the molecular basis of the robust rRNA production in vivo remains largely unknown. In S. cerevisiae, the multifunctional Net1 protein was reported to stimulate Pol I transcription. We found that the Pol I-stimulating function can be attributed to the very C-terminal region (CTR) of Net1. The CTR was required for normal cell growth and Pol I recruitment to rRNA genes in vivo and sufficient to promote Pol I transcription in vitro. Similarity with the acidic tail region of mammalian Pol I transcription factor UBF, which could partly functionally substitute for the CTR, suggests conserved roles for CTR-like domains in Pol I transcription from yeast to human.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , RNA Polimerase I/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Sequência de Aminoácidos , Proteínas de Ciclo Celular/genética , Sequência Conservada , Humanos , Proteínas Nucleares/genética , Proteínas Pol1 do Complexo de Iniciação de Transcrição/química , Proteínas Pol1 do Complexo de Iniciação de Transcrição/genética , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , RNA Ribossômico/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Deleção de Sequência , Transcrição Gênica
12.
PLoS One ; 14(1): e0203415, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30653518

RESUMO

Many of the small ribosomal subunit proteins are required for the stabilisation of late small ribosomal subunit (SSU) precursors and for final SSU rRNA processing in S. cerevisiae. Among them are ribosomal proteins (r-proteins) which form a protein cluster around rpS0 (uS2) at the "neck" of the SSU (S0-cluster) and others forming a nearby protein cluster around rpS3 (uS3) at the SSU "beak". Here we applied semi-quantitative proteomics together with complementary biochemical approaches to study how incomplete assembly of these two r-protein clusters affects binding and release of SSU maturation factors and assembly of other r-proteins in late SSU precursors in S. cerevisiae. For each of the two clusters specific impairment of the local r-protein assembly state was observed in Rio2 associated SSU precursors. Besides, cluster-specific effects on the association of biogenesis factors were detected. These suggested a role of S0-cluster formation for the efficient release of the two nuclear export factors Rrp12 and Slx9 from SSU precursors and for the correct incorporation of the late acting biogenesis factor Rio2. Based on our and on previous results we propose the existence of at least two different r-protein assembly checkpoints during late SSU maturation in S. cerevisiae. We discuss in the light of recent SSU precursor structure models how r-protein assembly states might be sensed by biogenesis factors at the S0-cluster checkpoint.


Assuntos
Processamento Pós-Transcricional do RNA , RNA Fúngico/metabolismo , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Fúngico/genética , RNA Ribossômico/genética , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Menores de Eucariotos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
13.
Nucleic Acids Res ; 46(6): 3140-3151, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29294095

RESUMO

The formation of ribosomal subunits is a highly dynamic process that is initiated in the nucleus and involves more than 200 trans-acting factors, some of which accompany the pre-ribosomes into the cytoplasm and have to be recycled into the nucleus. The inhibitor diazaborine prevents cytoplasmic release and recycling of shuttling pre-60S maturation factors by inhibiting the AAA-ATPase Drg1. The failure to recycle these proteins results in their depletion in the nucleolus and halts the pathway at an early maturation step. Here, we made use of the fast onset of inhibition by diazaborine to chase the maturation path in real-time from 27SA2 pre-rRNA containing pre-ribosomes localized in the nucleolus up to nearly mature 60S subunits shortly after their export into the cytoplasm. This allows for the first time to put protein assembly and disassembly reactions as well as pre-rRNA processing into a chronological context unraveling temporal and functional linkages during ribosome maturation.


Assuntos
Nucléolo Celular/metabolismo , Citoplasma/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/metabolismo , Transporte Biológico/efeitos dos fármacos , Compostos de Boro/farmacologia , Fluorescência , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Maiores de Eucariotos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/metabolismo , Imagem com Lapso de Tempo/métodos
14.
PLoS One ; 12(7): e0179405, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28686620

RESUMO

Yeast large ribosomal subunit (LSU) precursors are subject to substantial changes in protein composition during their maturation due to coordinated transient interactions with a large number of ribosome biogenesis factors and due to the assembly of ribosomal proteins. These compositional changes go along with stepwise processing of LSU rRNA precursors and with specific rRNA folding events, as revealed by recent cryo-electron microscopy analyses of late nuclear and cytoplasmic LSU precursors. Here we aimed to analyze changes in the spatial rRNA surrounding of selected ribosomal proteins during yeast LSU maturation. For this we combined a recently developed tethered tertiary structure probing approach with both targeted and high throughput readout strategies. Several structural features of late LSU precursors were faithfully detected by this procedure. In addition, the obtained data let us suggest that early rRNA precursor processing events are accompanied by a global transition from a flexible to a spatially restricted rRNA conformation. For intermediate LSU precursors a number of structural hallmarks could be addressed which include the fold of the internal transcribed spacer between 5.8S rRNA and 25S rRNA, the orientation of the central protuberance and the spatial organization of the interface between LSU rRNA domains I and III.


Assuntos
RNA Ribossômico 5,8S/ultraestrutura , RNA Ribossômico/ultraestrutura , Subunidades Ribossômicas Maiores/ultraestrutura , Ribossomos/genética , Microscopia Crioeletrônica , Conformação de Ácido Nucleico , Biogênese de Organelas , RNA Ribossômico/química , RNA Ribossômico/genética , RNA Ribossômico 5,8S/química , RNA Ribossômico 5,8S/genética , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Maiores/química , Subunidades Ribossômicas Maiores/genética , Ribossomos/química , Ribossomos/ultraestrutura , Saccharomyces cerevisiae/genética
15.
Methods Mol Biol ; 1455: 99-108, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27576713

RESUMO

RNA polymerase I (Pol I) activity is crucial to provide cells with sufficient amounts of ribosomal RNA (rRNA). Synthesis of rRNA takes place in the nucleolus, is tightly regulated and is coordinated with synthesis and assembly of ribosomal proteins, finally resulting in the formation of mature ribosomes. Many studies on Pol I mechanisms and regulation in the model organism S. cerevisiae were performed using either complex in vitro systems reconstituted from more or less purified fractions or genetic analyses. While providing many valuable insights these strategies did not always discriminate between direct and indirect effects in transcription initiation and termination, when mutated forms of Pol I subunits or transcription factors were investigated. Therefore, a well-defined minimal system was developed which allows to reconstitute highly efficient promoter-dependent Pol I initiation and termination of transcription. Transcription can be initiated at a minimal promoter only in the presence of recombinant core factor and extensively purified initiation competent Pol I. Addition of recombinant termination factors triggers transcriptional pausing and release of the ternary transcription complex. This minimal system represents a valuable tool to investigate the direct impact of (lethal) mutations in components of the initiation and termination complexes on the mechanism and regulation of rRNA synthesis.


Assuntos
RNA Polimerase I/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Transcrição Gênica , Proteínas de Ligação a DNA/isolamento & purificação , Proteínas de Ligação a DNA/metabolismo , Técnicas In Vitro , Proteínas Pol1 do Complexo de Iniciação de Transcrição/isolamento & purificação , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , Regiões Promotoras Genéticas , RNA Ribossômico/genética , Proteínas Recombinantes , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/metabolismo , Moldes Genéticos
16.
Nat Commun ; 7: 12126, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27418187

RESUMO

Eukaryotic RNA polymerase I (Pol I) is specialized in rRNA gene transcription synthesizing up to 60% of cellular RNA. High level rRNA production relies on efficient binding of initiation factors to the rRNA gene promoter and recruitment of Pol I complexes containing initiation factor Rrn3. Here, we determine the cryo-EM structure of the Pol I-Rrn3 complex at 7.5 Å resolution, and compare it with Rrn3-free monomeric and dimeric Pol I. We observe that Rrn3 contacts the Pol I A43/A14 stalk and subunits A190 and AC40, that association re-organizes the Rrn3 interaction interface, thereby preventing Pol I dimerization; and Rrn3-bound and monomeric Pol I differ from the dimeric enzyme in cleft opening, and localization of the A12.2 C-terminus in the active centre. Our findings thus support a dual role for Rrn3 in transcription initiation to stabilize a monomeric initiation competent Pol I and to drive pre-initiation complex formation.


Assuntos
Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , RNA Polimerase I/química , RNA Polimerase I/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Microscopia Crioeletrônica/métodos , Proteínas Pol1 do Complexo de Iniciação de Transcrição/genética , Regiões Promotoras Genéticas , Domínios Proteicos , Multimerização Proteica , RNA Polimerase I/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transcrição Gênica
17.
PLoS One ; 10(12): e0143768, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26642313

RESUMO

Cellular production of ribosomes involves the formation of highly defined interactions between ribosomal proteins (r-proteins) and ribosomal RNAs (rRNAs). Moreover in eukaryotic cells, efficient ribosome maturation requires the transient association of a large number of ribosome biogenesis factors (RBFs) with newly forming ribosomal subunits. Here, we investigated how r-protein assembly events in the large ribosomal subunit (LSU) rRNA domain II are coordinated with each other and with the association of RBFs in early LSU precursors of the yeast Saccharomyces cerevisiae. Specific effects on the pre-ribosomal association of RBFs could be observed in yeast mutants blocked in LSU rRNA domain II assembly. Moreover, formation of a cluster of r-proteins was identified as a downstream event in LSU rRNA domain II assembly. We analyzed in more detail the functional relevance of eukaryote specific bridges established by this r-protein cluster between LSU rRNA domain II and VI and discuss how they can support the stabilization and efficient processing of yeast early LSU precursor RNAs.


Assuntos
Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte/metabolismo , Modelos Moleculares , Proteínas Nucleares/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Processamento Pós-Transcricional do RNA , RNA Fúngico/metabolismo , RNA Ribossômico/metabolismo , Proteínas de Ligação a RNA , Proteínas Ribossômicas/química , Subunidades Ribossômicas Maiores de Eucariotos/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
18.
Methods Mol Biol ; 1334: 219-32, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26404153

RESUMO

Chromatin endogenous cleavage (ChEC) is a technique which allows to monitor protein-DNA interaction in the nucleus of eukaryotic cells. In addition to mapping of genomic interaction sites ChEC may also yield quantitative information about the occupancy of proteins at their genomic target regions. Here, we provide a protocol for ChEC experiments in S. cerevisiae, downstream DNA analysis and quantification of ChEC-mediated degradation. The potential of the method is exemplified in ChEC experiments with RNA polymerase I and the yeast homolog of linker histone H1.


Assuntos
Cromatina/genética , Proteínas de Ligação a DNA/genética , DNA/genética , Biologia Molecular/métodos , Cromatina/química , DNA/química , Proteínas de Ligação a DNA/química , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Nucleossomos/química , Nucleossomos/genética , Saccharomyces cerevisiae/genética
19.
PLoS One ; 9(12): e114898, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25501974

RESUMO

Eukaryotic ribosome biogenesis is a multistep process involving more than 150 biogenesis factors, which interact transiently with pre-ribosomal particles to promote their maturation. Some of these auxiliary proteins have been isolated in complexes found separate from the ribosomal environment. Among them, are 3 large UTP subcomplexes containing 6 or 7 protein subunits which are involved in the early steps of ribosome biogenesis. The composition of the UTP subcomplexes and the network of binary interactions between protein subunits have been analyzed previously. To obtain further insights into the structural and biochemical properties of UTP subcomplexes, we established a heterologous expression system to allow reconstitution of the yeast tUTP/UTP A and UTP B subcomplexes from their candidate subunits. The results of a series of reconstitution experiments involving different combinations of protein subunits are in good agreement with most of the previously observed binary interactions. Moreover, in combination with additional biochemical analyses, several stable building blocks of the UTP subcomplexes were identified. Based on these findings, we present a refined model of the tUTP/UTP A and UTP B architecture.


Assuntos
Complexos Multiproteicos/metabolismo , Biogênese de Organelas , Ribonucleoproteínas/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Uridina Trifosfato/metabolismo , Leveduras/citologia , Animais , Western Blotting , Células Cultivadas , Técnicas In Vitro , Insetos , Complexos Multiproteicos/genética , Oligonucleotídeos , Ribonucleoproteínas/genética , Proteínas de Saccharomyces cerevisiae/genética , Espectrometria de Massas em Tandem , Uridina Trifosfato/genética , Leveduras/metabolismo
20.
Mol Cell Biol ; 34(20): 3817-27, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25092870

RESUMO

Different models have been proposed explaining how eukaryotic gene transcription is terminated. Recently, Nsi1, a factor involved in silencing of ribosomal DNA (rDNA), was shown to be required for efficient termination of rDNA transcription by RNA polymerase I (Pol I) in the yeast Saccharomyces cerevisiae. Nsi1 contains Myb-like DNA binding domains and associates in vivo near the 3' end of rRNA genes to rDNA, but information about which and how DNA sequences might influence Nsi1-dependent termination is lacking. Here, we show that binding of Nsi1 to a stretch of 11 nucleotides in the correct orientation was sufficient to pause elongating Pol I shortly upstream of the Nsi1 binding site and to release the transcripts in vitro. The same minimal DNA element triggered Nsi1-dependent termination of pre-rRNA synthesis using an in vivo reporter assay. Termination efficiency in the in vivo system could be enhanced by inclusion of specific DNA sequences downstream of the Nsi1 binding site. These data and the finding that Nsi1 blocks efficiently only Pol I-dependent RNA synthesis in an in vitro transcription system improve our understanding of a unique mechanism of transcription termination.


Assuntos
DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , RNA Polimerase I/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Terminação da Transcrição Genética , Sequência de Bases , Sítios de Ligação , DNA Fúngico/genética , Regiões Promotoras Genéticas , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...